Pyrene biotransformation products as biomarkers of polycyclic aromatic hydrocarbon exposure in terrestrial Isopoda: concentration-response relationship, and field study in a contaminated forest.
نویسندگان
چکیده
In this study, biotransformation products of pyrene were measured in the hepatopancreas of terrestrial isopods as biomarkers of polycyclic aromatic hydrocarbon (PAH) exposure. These products--pyrene-1-glucoside, pyrene-1-sulfate, an unknown pyrene conjugate, and 1-hydroxypyrene--were quantitated using high-performance liquid chromatography (HPLC) with fluorescence detection. In a controlled exposure experiment, a linear relationship was established between pyrene exposure and pyrene metabolite concentrations in the hepatopancreas of Porcellio scaber Latr. To this end, isopods of the species P. scaber were exposed to a range of pyrene concentrations spiked to their food. A linear response was found for all pyrene conjugates in the range 0.67 to 67 microg/g of pyrene (dry wt). Hepatopancreatic pyrene metabolite concentrations were also measured in isopods (P. scaber and Oniscus asellus L.) from PAH-contaminated field sites. The sites and the inhabiting isopods were located in a gradient of atmospheric PAH deposition caused by a nearby blast furnace plant. The highest levels of conjugated 1-hydroxypyrene in the hepatopancreas were 3.8 pmol/g fresh weight (pyrene-1-glucoside) and 2.8 pmol/g fresh weight (pyrene-1-sulfate) (expressed on whole-body basis). The levels of the pyrene metabolites correlate with reported pyrene concentrations in spite of these sites. As pyrene is one of the most predominant PAHs, analysis of its metabolites provides a good tool for environmental risk assessment of ecosystems with regard to PAH exposure, bioavailability, and biotransformation.
منابع مشابه
Pyrene Metabolites in the Hepatopancreas and Gut of the Isopod Porcellio Scaber, a New Biomarker for Polycyclic Aromatic Hydrocarbon Exposure in Terrestrial Ecosystems
The object of this study was to investigate the formation of pyrene metabolites by the isopod Porcellio scaber as a possible tool in the environmental risk assessment of polycyclic aromatic hydrocarbon (PAH) exposure in terrestrial ecosystems. The formation of pyrene metabolites was studied after either pulse exposure to a single high dose, or prolonged exposure (14 d) to a lower dosage. Exposu...
متن کاملBiodegradation of Polycyclic Aromatic Hydrocarbons by Aerobic Mixed Bacterial Culture Isolated from Hydrocarbon Polluted Soils
In this study, the degradation potential of five polycyclic aromatic hydrocarbons (PAHs) by aerobic mixed bacterial cultures was investigated. Microorganisms were isolated from hydrocarbon contaminated soils of Shadegan wetland located in southwest of Iran. The degradation experiments were conducted in liquid cultures. PAH or PAHs concentration was 100 mg/L at the beginning of degradation e...
متن کاملCharacterization of enzymes involved in biotransformation of polycyclic aromatic hydrocarbons in terrestrial isopods.
Little is known about the capacity of terrestrial invertebrates to transform organic soil pollutants such as polycyclic aromatic hydrocarbons (PAHs). Studies were designed to characterize microsomal mixed function oxygenase and accompanying conjugation enzymes from the hepatopancreas of the terrestrial isopods Porcellio scaber and Oniscus asellus using pyrene and 1-hydroxypyrene as model substr...
متن کاملBiodegradation of polycyclic aromatic hydrocarbons by Pseudomonas species
Biodegradation of polycyclic aromatic hydrocarbons, toxic compounds widely distributed in the environment by bacteria, is a cheap and safe cleaning up method. The present study attempts to isolate and characterize dioxygenase-producing bacteria which are able to degrade phenanthrene and pyrene from refinery soils. It also aims to assess in vitro biodegradation. To do so, two contaminated soil s...
متن کاملBiodegradation of polycyclic aromatic hydrocarbons by Pseudomonas species
Biodegradation of polycyclic aromatic hydrocarbons, toxic compounds widely distributed in the environment by bacteria, is a cheap and safe cleaning up method. The present study attempts to isolate and characterize dioxygenase-producing bacteria which are able to degrade phenanthrene and pyrene from refinery soils. It also aims to assess in vitro biodegradation. To do so, two contaminated soil s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental toxicology and chemistry
دوره 22 1 شماره
صفحات -
تاریخ انتشار 2003